Beni-Suef University Journal of Basic and Applied Sciences (Oct 2021)

Assessment of antimicrobial phytopeptides: lipid transfer protein and hevein-like peptide in the prospect of structure, function and allergenic effect

  • Sarfuddin Azmi,
  • Shahnaaz Khatoon,
  • Mohd Kamil Hussain

DOI
https://doi.org/10.1186/s43088-021-00158-z
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Antimicrobial peptides (AMPs) are unique natural antibiotics that are crucial effectors of innate immune systems in almost all living organisms. Several different plant antimicrobial peptides have been identified and isolated, demonstrating a high level of protection against various types of bacteria, insects, nematodes and other microbes. Along with antimicrobial function, these peptides play a wide range of crucial function in plants, such as regulation of stomata, ion channel, heavy metals and membrane fluidity. Main body Antimicrobial peptides show a continuum of toxicity for a variety of plants and animals pathogenic microbes and even show cytotoxicity against cancer cells. Numerous studies have shown that transgenic plants have increased the expression of AMP-encoding genes in response to biotic and abiotic stresses, and plants that express transgenic AMP genes are more responsive to biotic, abiotic and other functions. In addition to being a molecule with protective properties, various allergic reactions are associated with some phytopeptides and proteins, in particular non-specific lipid transfer protein (nsLTP) and peptide-like hevein. Pru p3 from peach is the most clinically important allergen within the nsLTP family that cause real food allergies and also triggers extreme clinical reactions. Similarly, latex-fruit syndrome was primarily associated with well-studied latex allergen Hevein (Hev b8, Hev b6) and class I chitinases. Short conclusions Several findings have shown that, in the near future, transgenic plants based on AMPs against the verity of pathogenic fungi, bacteria and other abiotic stresses will be released without any adverse effects. Recent study reason that association of lipid with nsLTP enhances allergic sensitization and hevein-like domain of chitinase I essentially plays a role in cross-sensitivity of latex with different fruits and nuts. This review discusses the structures and various functions of lipid transfer protein and hevein-like peptide.

Keywords