Quantum (Mar 2023)

Efficient separation of quantum from classical correlations for mixed states with a fixed charge

  • Christian Carisch,
  • Oded Zilberberg

DOI
https://doi.org/10.22331/q-2023-03-20-954
Journal volume & issue
Vol. 7
p. 954

Abstract

Read online

Entanglement is the key resource for quantum technologies and is at the root of exciting many-body phenomena. However, quantifying the entanglement between two parts of a real-world quantum system is challenging when it interacts with its environment, as the latter mixes cross-boundary classical with quantum correlations. Here, we efficiently quantify quantum correlations in such realistic open systems using the operator space entanglement spectrum of a mixed state. If the system possesses a fixed charge, we show that a subset of the spectral values encode coherence between different cross-boundary charge configurations. The sum over these values, which we call "configuration coherence", can be used as a quantifier for cross-boundary coherence. Crucially, we prove that for purity non-increasing maps, e.g., Lindblad-type evolutions with Hermitian jump operators, the configuration coherence is an entanglement measure. Moreover, it can be efficiently computed using a tensor network representation of the state's density matrix. We showcase the configuration coherence for spinless particles moving on a chain in presence of dephasing. Our approach can quantify coherence and entanglement in a broad range of systems and motivates efficient entanglement detection.