Journal of Lipid Research (Nov 2008)

Sphingomyelinase acts by an area-activated mechanism on the liquid-expanded phase of sphingomyelin monolayers

  • Luisina De Tullio,
  • Bruno Maggio,
  • María Laura Fanani

Journal volume & issue
Vol. 49, no. 11
pp. 2347 – 2355

Abstract

Read online

We describe the localization of Alexa-488-labeled SMase in SM/ceramide (Cer) lipid monolayers containing segregated liquid-condensed (LC) Cer-enriched domains surrounded by a continuous liquid-expanded (LE) SM-enriched phase. Langmuir-Schaefer films were made in order to visualize the labeled enzyme. Independently of initial conditions Alexa-SMase is preferably localized in the SM-enriched LE phase and it is not enriched at the domain boundaries. A novel mechanism is proposed for the action of SMase, which can also explain the regulatory effect of the surface topography on the enzyme activity. The homogeneous enzymatic generation of Cer in the LE phase leads to a meta-stable, kinetically trapped, supersaturated mixed monolayer. This effect acts as driving force for the segregation of the Cer-enriched domain following classical nucleation mechanisms. Accordingly, the number and size of Cer-enriched domains are determined by the extent of Cer supersaturation in the LE phase rather than by the SMase local activity. The kinetic barrier for nucleation, for which a compositional gap of at least 53 mol% of Cer is necessary to reach a thermodynamically stable LC phase, can explain the lag time to reaching full catalytic activity. Altogether, the data support an “area-activated mechanism,” in which the enzyme is homogeneously active over the LE surface.

Keywords