Agronomy (May 2018)

Breeding Maize for Tolerance to Acidic Soils: A Review

  • Liliane Ngoune Tandzi,
  • Charles Shelton Mutengwa,
  • Eddy Léonard Mangaptche Ngonkeu,
  • Vernon Gracen

DOI
https://doi.org/10.3390/agronomy8060084
Journal volume & issue
Vol. 8, no. 6
p. 84

Abstract

Read online

Acidic soils hamper maize (Zea mays L.) production, causing yield losses of up to 69%. Low pH acidic soils can lead to aluminum (Al), manganese (Mn), or iron (Fe) toxicities. Genetic variability for tolerance to low soil pH exists among maize genotypes, which can be exploited in developing high-yielding acid-tolerant maize genotypes. In this paper, we review some of the most recent applications of conventional and molecular breeding approaches for improving maize yield under acidic soils. The gaps in breeding maize for tolerance to low soil pH are highlighted and an emphasis is placed on promoting the adoption of the numerous existing acid soil-tolerant genotypes. While progress has been made in breeding for tolerance to Al toxicity, little has been done on Mn and Fe toxicities. More research inputs are therefore required in: (1) developing screening methods for tolerance to manganese and iron toxicities; (2) elucidating the mechanisms of maize tolerance to Mn and Fe toxicities; and, (3) identifying the quantitative trait loci (QTL) responsible for Mn and Fe tolerance in maize cultivars. There is also a need to raise farmers’ and other stakeholders’ awareness of the problem of Al, Mn, and Fe soil toxicities to improve the adoption rate of the available acid-tolerant maize genotypes. Maize breeders should work more closely with farmers at the early stages of the release process of a new variety to facilitate its adoption level. Researchers are encouraged to strengthen their collaboration and exchange low soil pH-tolerant maize germplasm.

Keywords