Poultry Science (Apr 2024)

Epidemiological investigation and β-lactam antibiotic resistance of Riemerella anatipestifer isolates with waterfowl origination in Anhui Province, China

  • Junfeng Liu,
  • Dongmin Hao,
  • Xueyan Ding,
  • Mingzhen Shi,
  • Qiaojun Wang,
  • Hengxu He,
  • Binghua Cheng,
  • Mengping Wang,
  • Qingxiu Wang,
  • Yuqiang Xiang,
  • Liying Chen

Journal volume & issue
Vol. 103, no. 4
p. 103490

Abstract

Read online

ABSTRACT: Riemerella anatipestifer (R. anatipestifer) is a highly pathogenic and complex serotypes waterfowl pathogen with inherent resistance to multiple antibiotics. This study was aimed to investigate the antibiotic resistance characteristics and genomic features of R. anatipestifer isolates in Anhui Province, China in 2023. A total of 287 cases were analysed from duck farms and goose farms, and the R. anatipestifer isolates were subjected to drug resistance tests for 30 antimicrobials. Whole genome sequencing (WGS) and bioinformatics analysis were performed on the bacterial genomes, targeting the β-lactam resistance genes. The results showed that a total of 74 isolates of R. anatipestifer were isolated from 287 cases, with a prevalence of 25.8%. The antimicrobial susceptibility testing (AST) revealed that all the 74 isolates were resistant to multiple drugs, ranging from 13 to 26 kinds of drugs. Notably, these isolates showed significant resistance to aminoglycosides and macrolides, which are also commonly used in clinical practices. Data revealed the presence of several β-lactamase-related genes among the isolates, including a novel blaRASA-1 variant (16.2%), the class A extended-spectrum β-lactamase blaRAA-1 (12.2%), and a blaOXA-209 variant (98.6%). Functional analysis of the variants blaRASA-1 and blaOXA-209 showed that the blaRASA-1 variant exhibited activity against various β-lactam antibiotics while their occurrence in R. anatipestifer were not common. The blaOXA-209 variant, on the other hand, did not perform any β-lactam antibiotic resistance. Furthermore, we observed that blaRAA-1 could undergo horizontal transmission among different bacteria via the insertion sequence IS982. In conclusion, this study delves into the high prevalence of R. anatipestifer infection in waterfowl in Anhui, China. The isolated strains exhibit severe drug resistance issues, closely associated with the prevalence of antibiotic resistance genes (ARG). Additionally, our research investigates the β-lactam antibiotic resistance mechanism in R. anatipestifer.

Keywords