Energies (Feb 2023)

Advances in High-Temperature Molten Salt-Based Carbon Nanofluid Research

  • Xia Chen,
  • Mingxuan Zhang,
  • Yuting Wu,
  • Chongfang Ma

DOI
https://doi.org/10.3390/en16052178
Journal volume & issue
Vol. 16, no. 5
p. 2178

Abstract

Read online

Molten salt is an excellent medium for heat transfer and storage. The unique microstructure of carbon nanomaterials leads to good mechanical stability, low density, high thermal conductivity, and high strength, etc. The addition of carbon nanomaterials to molten salt to form molten salt nanofluid can remarkably enhance the specific heat capacity and thermal conductivity of molten salt and reduce the molten salt viscosity, which is of great importance to increase the heat storage density and reduce the heat storage cost. Nevertheless, some challenges remain in the study of such nanofluids. The main challenge is the dispersion stability of carbon nanomaterials. Therefore, to improve research on carbon nanofluids, this paper summarizes the progress of carbon-based molten salt nanofluid research worldwide including the preparation methods of molten salt nanofluids, the improvement of heat transfer performance, and the improvement of heat storage performance. The effects of carbon nanoparticle concentration, size, and type on the heat transfer and storage performance of molten salt are derived, and the effects of nanoparticle shape on the heat transfer performance of molten salt are analyzed while more promising preparation methods for carbon-based molten salt nanofluids are proposed. In addition, the future problems that need to be solved for high-temperature molten salt-based carbon nanofluids are briefly discussed.

Keywords