Cell Death and Disease (Nov 2024)
PRMT1-mediated methylation of ME2 promotes hepatocellular carcinoma growth by inhibiting ubiquitination
Abstract
Abstract The mitochondrial malic enzyme 2 (ME2), which is frequently elevated during carcinogenesis and may be a target for cancer therapy, catalyzes the conversion of malate to pyruvate. The processes controlling ME2 activity, however, remain largely unclear. In this work, we show that human hepatocellular carcinoma (HCC) tissues contain high levels of ME2 and that the methylation of ME2 stimulates the growth and migration of HCC cells. Furthermore, we observed that ME2 interacts with protein arginine methyltransferase 1 (PRMT1) and that ME2 enzymatic activity is activated by mutation of ME2 at lysine 67. Mitochondrial respiration was markedly increased by activated ME2, which promoted cell division and carcinogenesis. Furthermore, a negative prognosis for patients was strongly linked with the expression levels of PRMT1 and ME2 R67K in HCC tissues. These findings imply that hepatocellular carcinoma growth is aided by PRMT1-mediated ME2 methylation, that is an essential signaling event that cancer cells need to continue mitochondrial respiration.