Scientific Reports (Jul 2024)

Sparse transformer with local and seasonal adaptation for multivariate time series forecasting

  • Yifan Zhang,
  • Rui Wu,
  • Sergiu M. Dascalu,
  • Frederick C. Harris

DOI
https://doi.org/10.1038/s41598-024-66886-1
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Transformers have achieved remarkable performance in multivariate time series(MTS) forecasting due to their capability to capture long-term dependencies. However, the canonical attention mechanism has two key limitations: (1) its quadratic time complexity limits the sequence length, and (2) it generates future values from the entire historical sequence. To address this, we propose a Dozer Attention mechanism consisting of three sparse components: (1) Local, each query exclusively attends to keys within a localized window of neighboring time steps. (2) Stride, enables each query to attend to keys at predefined intervals. (3) Vary, allows queries to selectively attend to keys from a subset of the historical sequence. Notably, the size of this subset dynamically expands as forecasting horizons extend. Those three components are designed to capture essential attributes of MTS data, including locality, seasonality, and global temporal dependencies. Additionally, we present the Dozerformer Framework, incorporating the Dozer Attention mechanism for the MTS forecasting task. We evaluated the proposed Dozerformer framework with recent state-of-the-art methods on nine benchmark datasets and confirmed its superior performance. The experimental results indicate that excluding a subset of historical time steps from the time series forecasting process does not compromise accuracy while significantly improving efficiency. Code is available at https://github.com/GRYGY1215/Dozerformer.