Heliyon (May 2024)
From whole genomes to probiotic candidates: A study of potential lactobacilli strains selection for vaginitis treatment
Abstract
Vaginitis, characterized by pathogenic invasion and a deficiency in beneficial lactobacilli, has recognized lactobacilli supplementation as a novel therapeutic strategy. However, due to individual differences in vaginal microbiota, identifying universally effective Lactobacillus strains is challenging. Traditional methodologies for probiotic selection, which heavily depend on extensive in vitro experiments, are both time-intensive and laborious. The aim of this study was to pinpoint possible vaginal probiotic candidates based on whole-genome screening. We sequenced the genomes of 98 previously isolated Lactobacillus strains, annotating their genes involved in probiotic metabolite biosynthesis, adherence, acid/bile tolerance, and antibiotic resistance. A scoring system was used to assess the strains based on their genomic profiles. The highest-scoring strains underwent further in vitro evaluation. Consequently, two strains, Lactobacillus crispatus LG55-27 and Lactobacillus gasseri TM13-16, displayed an outstanding ability to produce d-lactate and adhere to human vaginal epithelial cells. They also showed higher antimicrobial activity against Gardnerella vaginalis, Escherichia coli, Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa compared to reference Lactobacillus strains. Their resilience to acid and bile environments highlights the potential for oral supplementation. Oral and vaginal administration of these two strains were tested in a bacterial vaginosis (BV) rat model at various doses. Results indicated that combined vaginal administration of these strains at 1 × 106 CFU/day significantly mitigated BV in rats. This research offers a probiotic dosage guideline for vaginitis therapy, underscoring an efficient screening process for probiotics using genome sequencing, in vitro testing, and in vivo BV model experimentation.