Clinical Epidemiology (Oct 2020)

Trajectory Modelling Techniques Useful to Epidemiological Research: A Comparative Narrative Review of Approaches

  • Nguena Nguefack HL,
  • Pagé MG,
  • Katz J,
  • Choinière M,
  • Vanasse A,
  • Dorais M,
  • Samb OM,
  • Lacasse A

Journal volume & issue
Vol. Volume 12
pp. 1205 – 1222

Abstract

Read online

Hermine Lore Nguena Nguefack,1 M Gabrielle Pagé,2,3 Joel Katz,4 Manon Choinière,2,3 Alain Vanasse,5,6 Marc Dorais,7 Oumar Mallé Samb,1 Anaïs Lacasse1 1Département des Sciences de la santé, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, Québec, Canada; 2Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada; 3Département d’anesthésiologie et de médecine de la douleur, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada; 4Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada; 5Département de médecine de famille et de médecine d’urgence, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; 6Centre de recherche du Centre hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, Québec, Canada; 7StatSciences Inc., Notre-Dame-de-lL’île-Perrot, Québec, CanadaCorrespondence: Anaïs LacasseDépartement des sciences de la santé, Université du Québec en Abitibi-Témiscamingue (UQAT), 445, Boul. de l’Université, Rouyn-Noranda (Qc) J9X 5E4, Québec, CanadaTel +1 819 762 0971, 2722Email [email protected]: Trajectory modelling techniques have been developed to determine subgroups within a given population and are increasingly used to better understand intra- and inter-individual variability in health outcome patterns over time. The objectives of this narrative review are to explore various trajectory modelling approaches useful to epidemiological research and give an overview of their applications and differences. Guidance for reporting on the results of trajectory modelling is also covered. Trajectory modelling techniques reviewed include latent class modelling approaches, ie, growth mixture modelling (GMM), group-based trajectory modelling (GBTM), latent class analysis (LCA), and latent transition analysis (LTA). A parallel is drawn to other individual-centered statistical approaches such as cluster analysis (CA) and sequence analysis (SA). Depending on the research question and type of data, a number of approaches can be used for trajectory modelling of health outcomes measured in longitudinal studies. However, the various terms to designate latent class modelling approaches (GMM, GBTM, LTA, LCA) are used inconsistently and often interchangeably in the available scientific literature. Improved consistency in the terminology and reporting guidelines have the potential to increase researchers’ efficiency when it comes to choosing the most appropriate technique that best suits their research questions.Keywords: modelling techniques, growth mixture modelling, group-based trajectory modelling, latent class analysis, latent transition analysis, cluster analysis, sequence analysis

Keywords