Atmospheric Chemistry and Physics (Dec 2011)

The wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty

  • S. P. Urbanski,
  • W. M. Hao,
  • B. Nordgren

DOI
https://doi.org/10.5194/acp-11-12973-2011
Journal volume & issue
Vol. 11, no. 24
pp. 12973 – 13000

Abstract

Read online

Biomass burning emission inventories serve as critical input for atmospheric chemical transport models that are used to understand the role of biomass fires in the chemical composition of the atmosphere, air quality, and the climate system. Significant progress has been achieved in the development of regional and global biomass burning emission inventories over the past decade using satellite remote sensing technology for fire detection and burned area mapping. However, agreement among biomass burning emission inventories is frequently poor. Furthermore, the uncertainties of the emission estimates are typically not well characterized, particularly at the spatio-temporal scales pertinent to regional air quality modeling. We present the Wildland Fire Emission Inventory (WFEI), a high resolution model for non-agricultural open biomass burning (hereafter referred to as wildland fires, WF) in the contiguous United States (CONUS). The model combines observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua satellites, meteorological analyses, fuel loading maps, an emission factor database, and fuel condition and fuel consumption models to estimate emissions from WF. <br></br> WFEI was used to estimate emissions of CO (ECO) and PM<sub>2.5</sub> (EPM<sub>2.5</sub>) for the western United States from 2003–2008. The uncertainties in the inventory estimates of ECO and EPM<sub>2.5</sub> (<i>u</i><sub>ECO</sub> and <i>u</i><sub>EPM<sub>2.5</sub></sub>, respectively) have been explored across spatial and temporal scales relevant to regional and global modeling applications. In order to evaluate the uncertainty in our emission estimates across multiple scales we used a figure of merit, the half mass uncertainty, <i>ũ</i><sub>EX</sub> (where X = CO or PM<sub>2.5</sub>), defined such that for a given aggregation level 50% of total emissions occurred from elements with <i>u</i><sub>EX</sub> <i>ũ</i><sub>EX</sub>. The sensitivity of the WFEI estimates of ECO and EPM<sub>2.5</sub> to uncertainties in mapped fuel loading, fuel consumption, burned area and emission factors have also been examined. <br></br> The estimated annual, domain wide ECO ranged from 436 Gg yr<sup>−1</sup> in 2004 to 3107 Gg yr<sup>−1</sup> in 2007. The extremes in estimated annual, domain wide EPM<sub>2.5</sub> were 65 Gg yr<sup>−1</sup> in 2004 and 454 Gg yr<sup>−1</sup> in 2007. Annual WF emissions were a significant share of total emissions from non-WF sources (agriculture, dust, non-WF fire, fuel combustion, industrial processes, transportation, solvent, and miscellaneous) in the western United States as estimated in a national emission inventory. In the peak fire year of 2007, WF emissions were ~20% of total (WF + non-WF) CO emissions and ~39% of total PM<sub>2.5</sub> emissions. During the months with the greatest fire activity, WF accounted for the majority of total CO and PM<sub>2.5</sub> emitted across the study region. Uncertainties in annual, domain wide emissions was 28% to 51% for CO and 40% to 65% for PM<sub>2.5</sub>. Sensitivity of <i>ũ</i><sub>ECO</sub> and <i>ũ</i><sub>EPM<sub>2.5</sub></sub> to the emission model components depended on scale. At scales relevant to regional modeling applications (&Delta;<i>x</i> = 10 km, &Delta;<i>t</i> = 1 day) WFEI estimates 50% of total ECO with an uncertainty <133% and half of total EPM<sub>2.5</sub> with an uncertainty <146%. <i>ũ</i><sub>ECO</sub> and <i>ũ</i><sub>EPM<sub>2.5</sub></sub> are reduced by more than half at the scale of global modeling applications (&Delta;<i> x</i> = 100 km, &Delta;<i> t</i> = 30 day) where 50% of total emissions are estimated with an uncertainty <50% for CO and <64% for PM<sub>2.5</sub>. Uncertainties in the estimates of burned area drives the emission uncertainties at regional scales. At global scales <i>ũ</i><sub>ECO</sub> is most sensitive to uncertainties in the fuel load consumed while the uncertainty in the emission factor for PM<sub>2.5</sub> plays the dominant role in <i>ũ</i><sub>EPM<sub>2.5</sub></sub>. Our analysis indicates that the large scale aggregate uncertainties (e.g. the uncertainty in annual CO emitted for CONUS) typically reported for biomass burning emission inventories may not be appropriate for evaluating and interpreting results of regional scale modeling applications that employ the emission estimates. When feasible, biomass burning emission inventories should be evaluated and reported across the scales for which they are intended to be used.