Energies (Sep 2023)

Meta In-Context Learning: Harnessing Large Language Models for Electrical Data Classification

  • Mi Zhou,
  • Fusheng Li,
  • Fan Zhang,
  • Junhao Zheng,
  • Qianli Ma

DOI
https://doi.org/10.3390/en16186679
Journal volume & issue
Vol. 16, no. 18
p. 6679

Abstract

Read online

The evolution of communication technology has driven the demand for intelligent power grids and data analysis in power systems. However, obtaining and annotating electrical data from intelligent terminals is time-consuming and challenging. We propose Meta In-Context Learning (M-ICL), a new approach that harnesses large language models to classify time series electrical data, which largely alleviates the need for annotated data when adapting to new tasks. The proposed M-ICL consists of two stages: meta-training and meta-testing. In meta-training, the model is trained on various tasks that have an adequate amount of training data. The meta-training stage aims to learn the mapping between electrical data and the embedding space of large language models. In the meta-testing stage, the trained model makes predictions on new tasks. By utilizing the in-context learning ability of large language models, M-ICL adapts models to new tasks effectively with only a few annotated instances (e.g., 1–5 training instances per class). Our contributions lie in the new application of large language models to electrical data classification and the introduction of M-ICL to improve the classification performance with the strong in-context learning ability of large language models. Furthermore, we conduct extensive experiments on 13 real-world datasets, and the experimental results show that the proposed M-ICL improves the average accuracy over all datasets by 19.06%, 12.06%, and 6.63% when only one, two, and five training instances for each class are available, respectively. In summary, M-ICL offers a promising solution to the challenges of electrical data classification.

Keywords