Universe (Sep 2021)

Hints for a Gravitational Transition in Tully–Fisher Data

  • George Alestas,
  • Ioannis Antoniou,
  • Leandros Perivolaropoulos

DOI
https://doi.org/10.3390/universe7100366
Journal volume & issue
Vol. 7, no. 10
p. 366

Abstract

Read online

We use an up-to-date compilation of Tully–Fisher data to search for transitions in the evolution of the Tully–Fisher relation. Using an up-to-date data compilation, we find hints at ≈3σ level for a transition at critical distances Dc≃9 Mpc and Dc≃17 Mpc. We split the full sample in two subsamples, according to the measured galaxy distance with respect to splitting distance Dc, and identify the likelihood of the best-fit slope and intercept of one sample with respect to the best-fit corresponding values of the other sample. For Dc≃9 Mpc and Dc≃17 Mpc, we find a tension between the two subsamples at a level of Δχ2>17(3.5σ). Using Monte Carlo simulations, we demonstrate that this result is robust with respect to random statistical and systematic variations of the galactic distances and is unlikely in the context of a homogeneous dataset constructed using the Tully–Fisher relation. If the tension is interpreted as being due to a gravitational strength transition, it would imply a shift in the effective gravitational constant to lower values for distances larger than Dc by ΔGG≃−0.1. Such a shift is of the anticipated sign and magnitude but at a somewhat lower distance (redshift) than the gravitational transition recently proposed to address the Hubble and growth tensions (ΔGG≃−0.1 at the transition redshift of zt≲0.01 (Dc≲40 Mpc)).

Keywords