Shock and Vibration (Jan 2021)
Nonlinear Dynamics of a Blade Rotor with Coupled Rubbing of Labyrinth Seal and Tip Seal
Abstract
The dynamic response and its stability of a blade rotor with coupled rubbing in the labyrinth seal and tip seal are investigated. The dynamic equations are established based on the Hertz contact rubbing force at the labyrinth seal and the tip rubbing force considering both the contact deformation of the tip seal and the bending deformation of the blade. Numerical simulations show that the coupled rubbing response includes periodic motions, almost periodic motions, and chaotic motions. Compared with the single rubbing fault, coupled rubbing increases the range of rotation velocity of contact. A new continuation shooting method is used in the solution and stability analysis of the periodic response to give the bifurcation diagrams. The paths of the system for entering and exiting chaos are analyzed.