Scientific Reports (Nov 2024)
A digital pathology model for predicting radioiodine-avid metastases on initial post-therapeutic 131I scan in patients with papillary thyroid cancer
Abstract
Abstract Accurate postoperative assessment is critical for optimizing 131I therapy in patients with papillary thyroid cancer (PTC). This study aimed to develop a pathology model utilizing postoperative digital pathology slides to predict lymph node and/or distant metastases on post-therapeutic 131I scan after initial 131I treatment in PTC patients. A retrospective analysis was conducted on 229 PTC patients who underwent total or near-total thyroidectomy and subsequent 131I treatment after levothyroxine (LT4) withdrawal between January 2022 and August 2023. The pathology model was developed through two stages: patch-level prediction and WSI-level prediction. The clinical model was constructed using statistically significant variables identified from univariate and multivariate logistic regression analysis. Of the 229 patients, 19.6% (45/229) exhibited 131I-avid metastatic foci in post-therapeutic 131I scan. Multifactorial analysis identified stimulated thyroglobulin (sTg) as the sole independent risk factor. The AUC of the pathology model in the training and test cohorts were 0.976 (95% CI 0.948–1.000) and 0.805 (95% CI 0.660–0.951), respectively, which were significantly higher than the clinical model (AUC 0.652 and 0.548, Pall < 0.05). This model has the potential to serve as a valuable tool for clinicians in tailoring treatment strategies, thereby optimizing therapeutic outcomes for PTC patients.