e-Prime: Advances in Electrical Engineering, Electronics and Energy (Dec 2023)

1.7-kV vertical GaN p-n diode with triple-zone graded junction termination extension formed by ion-implantation

  • Yu Duan,
  • Jingshan Wang,
  • Andy Xie,
  • Zhongtao Zhu,
  • Patrick Fay

Journal volume & issue
Vol. 6
p. 100330

Abstract

Read online

Edge termination has emerged as an important area in the design and realization of vertical GaN power electronic devices. While the material properties of GaN are promising for high-performance devices, in practice the breakdown voltage can be compromised by inadequate edge termination (ET). While solutions in other materials (e.g. Si, SiC) are well-known, these are challenging to implement in GaN due to inherent difficulties in p-type doping GaN. In this work, we report a etch-free triple-zone graded junction termination extension (JTE) for vertical GaN diodes formed by Nitrogen ion implantation. The triple-zone design offers lower peak fields for effective field control. In addition, the proposed triple-zone JTE is beneficial for increasing the fabrication process window and allowing for more variability in epitaxial wafer growth in terms of p-GaN doping and thickness while maintaining high breakdown voltage. The fabricated GaN p-n diodes with triple-zone JTE obtain a maximum breakdown voltage of 1.73 kV with specific on-resistance Ron of 0.4 mΩcm2. Temperature-dependent reverse characteristics show that the devices have a positive temperature coefficient of the breakdown voltage indicating an avalanche breakdown mechanism. These results suggest that vertical GaN p–n diodes with N-implanted triple-zone JTE are promising for power applications.

Keywords