SciPost Physics Core (May 2022)
Landau levels in curved space realized in strained graphene
Abstract
The quantum Hall effect in curved space has been the subject of many theoretical investigations in the past, but devising a physical system to observe this effect is hard. Many works have indicated that electronic excitations in strained graphene realize Dirac fermions in curved space in the presence of a background pseudo-gauge field, providing an ideal playground for this. However, the absence of a direct matching between a numerical, strained tight-binding calculation of an observable and the corresponding curved space prediction has hindered realistic predictions. In this work, we provide this matching by deriving the low-energy Hamiltonian from the tight-binding model analytically to second order in the strain and mapping it to the curved-space Dirac equation. Using a strain profile that produces a constant pseudo-magnetic field and a constant curvature, we compute the Landau level spectrum with real-space numerical tight-binding calculations and find excellent agreement with the prediction of the quantum Hall effect in curved space. We conclude discussing experimental schemes for measuring this effect.