Stats (May 2023)
Area under the Curve as an Alternative to Latent Growth Curve Modeling When Assessing the Effects of Predictor Variables on Repeated Measures of a Continuous Dependent Variable
Abstract
Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which either require specialized software to conduct or advanced knowledge of statistical methods to inform the selection of the correct model options (e.g., correlation structure). One simple alternative to conventional longitudinal data analysis methods is to calculate the area under the curve (AUC) from repeated measures and then use this new variable in one’s model. The present study assessed the relative efficacy of two AUC measures: the AUC with respect to the ground (AUC-g) and the AUC with respect to the increase (AUC-i) in comparison to latent growth curve modeling (LGCM), a popular repeated measures data analysis method. Using data from the ongoing Panel Study of Income Dynamics (PSID), we assessed the effects of four predictor variables on repeated measures of social anxiety, using both the AUC and LGCM. We used the full information maximum likelihood (FIML) method to account for missing data in LGCM and multiple imputation to account for missing data in the calculation of both AUC measures. Extracting parameter estimates from these models, we next conducted Monte Carlo simulations to assess the parameter bias and power (two estimates of performance) of both methods in the same models, with sample sizes ranging from 741 to 50. The results using both AUC measures in the initial models paralleled those of LGCM, particularly with respect to the LGCM baseline. With respect to the simulations, both AUC measures preformed as well or even better than LGCM in all sample sizes assessed. These results suggest that the AUC may be a viable alternative to LGCM, especially for researchers with less access to the specialized software necessary to conduct LGCM.
Keywords