Remote Sensing (Jan 2023)

Multitemporal Feature-Level Fusion on Hyperspectral and LiDAR Data in the Urban Environment

  • Agnieszka Kuras,
  • Maximilian Brell,
  • Kristian Hovde Liland,
  • Ingunn Burud

DOI
https://doi.org/10.3390/rs15030632
Journal volume & issue
Vol. 15, no. 3
p. 632

Abstract

Read online

Technological innovations and advanced multidisciplinary research increase the demand for multisensor data fusion in Earth observations. Such fusion has great potential, especially in the remote sensing field. One sensor is often insufficient in analyzing urban environments to obtain comprehensive results. Inspired by the capabilities of hyperspectral and Light Detection and Ranging (LiDAR) data in multisensor data fusion at the feature level, we present a novel approach to the multitemporal analysis of urban land cover in a case study in Høvik, Norway. Our generic workflow is based on bitemporal datasets; however, it is designed to include datasets from other years. Our framework extracts representative endmembers in an unsupervised way, retrieves abundance maps fed into segmentation algorithms, and detects the main urban land cover classes by implementing 2D ResU-Net for segmentation without parameter regularizations and with effective optimization. Such segmentation optimization is based on updating initial features and providing them for a second iteration of segmentation. We compared segmentation optimization models with and without data augmentation, achieving up to 11% better accuracy after segmentation optimization. In addition, a stable spectral library is automatically generated for each land cover class, allowing local database extension. The main product of the multitemporal analysis is a map update, effectively detecting detailed changes in land cover classes.

Keywords