IEEE Access (Jan 2019)
A Lightweight LFSR-Based Strong Physical Unclonable Function Design on FPGA
Abstract
Physical unclonable function (PUF), a reliable physical security primitive, can be implemented in FPGAs and ASICs. Strong PUF is an important PUF classification that provides a large “Challenge-Response” pairs (CRP) space for device authentication. However, most of the traditional strong PUF designs represented by the arbiter PUF are difficult to implement on FPGA. We propose a new lightweight strong PUF design that can dynamically reconfigure while maintaining high entropy and large CRP space. We implement the PUF on a 28-nm FPGA. The experimental results show that the uniformity of the PUF is 49.8%, the uniqueness is 49.9%, which is close to the ideal value, and the hardware overhead is very small. This design is easy to implement and suitable for device authentication on FPGA.
Keywords