Plants (Nov 2021)

Enriched CO<sub>2</sub> and Root-Associated Fungi (Mycorrhizae) Yield Inverse Effects on Plant Mass and Root Morphology in Six <i>Asclepias</i> Species

  • Rondy J. Malik,
  • James D. Bever

DOI
https://doi.org/10.3390/plants10112474
Journal volume & issue
Vol. 10, no. 11
p. 2474

Abstract

Read online

While milkweeds (Asclepias spp.) are important for sustaining biodiversity in marginal ecosystems, CO2 flux may afflict Asclepias species and cause detriment to native communities. Negative CO2-induced effects may be mitigated through mycorrhizal associations. In this study, we sought to determine how mycorrhizae interacts with CO2 to influence Asclepias biomass and root morphology. A broad range of Asclepias species (n = 6) were chosen for this study, including four tap-root species (A. sullivantii, A. syriaca, A. tuberosa, and A. viridis) and two fibrous root species (A. incarnata and A. verticillata). Collectively, the six Asclepias species were manipulated under a 2 × 2 full-factorial design that featured two mycorrhizal levels (−/+ mycorrhizae) and two CO2 levels (ambient and enriched (i.e., 3.5× ambient)). After a duration of 10 months, Asclepias responses were assessed as whole dry weight (i.e., biomass) and relative transportive root. Relative transportive root is the percent difference in the diameter of highest order root (transportive root) versus that of first-order absorptive roots. Results revealed an asymmetrical response, as mycorrhizae increased Asclepias biomass by ~12-fold, while enriched CO2 decreased biomass by about 25%. CO2 did not impact relative transportive roots, but mycorrhizae increased root organ’s response by more than 20%. Interactions with CO2 and mycorrhizae were observed for both biomass and root morphology (i.e., relative transportive root). A gene associated with CO2 fixation (rbcL) revealed that the two fibrous root species formed a phylogenetic clade that was distant from the four tap-root species. The effect of mycorrhizae was most profound in tap-root systems, as mycorrhizae modified the highest order root into tuber-like structures. A strong positive correlation was observed with biomass and relative transportive root. This study elucidates the interplay with roots, mycorrhizae, and CO2, while providing a potential pathway for mycorrhizae to ameliorate CO2 induced effects.

Keywords