Nanomaterials (Jul 2024)

One-Pot Synthesis of Cellulose-Based Carbon Aerogel Loaded with TiO<sub>2</sub> and g-C<sub>3</sub>N<sub>4</sub> and Its Photocatalytic Degradation of Rhodamine B

  • Fangqin Liu,
  • Mingjie Fan,
  • Xia Liu,
  • Jinyang Chen

DOI
https://doi.org/10.3390/nano14131141
Journal volume & issue
Vol. 14, no. 13
p. 1141

Abstract

Read online

A cellulose-based carbon aerogel (CTN) loaded with titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) was prepared using sol–gel, freeze-drying, and high-temperature carbonization methods. The formation of the sol–gel was carried out through a one-pot method using refining papermaking pulp, tetrabutyl titanate, and urea as raw materials and hectorite as a cross-linking and reinforcing agent. Due to the cross-linking ability of hectorite, the carbonized aerogel maintained a porous structure and had a large specific surface area with low density (0.0209 g/cm3). The analysis of XRD, XPS, and Raman spectra revealed that the titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) were uniformly distributed in the CTN, while TEM and SEM observations demonstrated the uniformly distributed three-dimensional porous structure of CTN. The photocatalytic activity of the CTN was determined according to its ability to degrade rhodamine B. The removal rate reached 89% under visible light after 120 min. In addition, the CTN was still stable after five reuse cycles. The proposed catalyst exhibits excellent photocatalytic performance under visible light conditions.

Keywords