Earth, Planets and Space (Mar 2021)

Volcanic unrest at Hakone volcano after the 2015 phreatic eruption: reactivation of a ruptured hydrothermal system?

  • Kazutaka Mannen,
  • Yuki Abe,
  • Yasushi Daita,
  • Ryosuke Doke,
  • Masatake Harada,
  • George Kikugawa,
  • Naoki Honma,
  • Yuji Miyashita,
  • Yohei Yukutake

DOI
https://doi.org/10.1186/s40623-021-01387-3
Journal volume & issue
Vol. 73, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Since the beginning of the twenty-first century, volcanic unrest has occurred every 2–5 years at Hakone volcano. After the 2015 eruption, unrest activity changed significantly in terms of seismicity and geochemistry. Like the pre- and co-eruptive unrest, each post-eruptive unrest episode was detected by deep inflation below the volcano (~ 10 km) and deep low frequency events, which can be interpreted as reflecting supply of magma or magmatic fluid from depth. The seismic activity during the post-eruptive unrest episodes also increased; however, seismic activity beneath the eruption center during the unrest episodes was significantly lower, especially in the shallow region (~ 2 km), while sporadic seismic swarms were observed beneath the caldera rim, ~ 3 km away from the center. This observation and a recent InSAR analysis imply that the hydrothermal system of the volcano could be composed of multiple sub-systems, each of which can host earthquake swarms and show independent volume changes. The 2015 eruption established routes for steam from the hydrothermal sub-system beneath the eruption center (≥ 150 m deep) to the surface through the cap-rock, allowing emission of super-heated steam (~ 160 ºC). This steam showed an increase in magmatic/hydrothermal gas ratios (SO2/H2S and HCl/H2S) in the 2019 unrest episode; however, no magma supply was indicated by seismic and geodetic observations. Net SO2 emission during the post-eruptive unrest episodes, which remained within the usual range of the post-eruptive period, is also inconsistent with shallow intrusion. We consider that the post-eruptive unrest episodes were also triggered by newly derived magma or magmatic fluid from depth; however, the breached cap-rock was unable to allow subsequent pressurization and intensive seismic activity within the hydrothermal sub-system beneath the eruption center. The heat released from the newly derived magma or fluid dried the vapor-dominated portion of the hydrothermal system and inhibited scrubbing of SO2 and HCl to allow a higher magmatic/hydrothermal gas ratio. The 2015 eruption could have also breached the sealing zone near the brittle–ductile transition and the subsequent self-sealing process seems not to have completed based on the observations during the post-eruptive unrest episodes.

Keywords