Lubricants (Sep 2024)
Effect of Grinding Media Grading on Liner Wear and Load Behavior in a Ball Mill by Using Rocky DEM
Abstract
The liner is a wear-prone component in ball mills, subject to continuous impacts, squeezing, and abrasion from the grinding media during operation. Its service performance directly affects the working efficiency of the ball mill. The service life of mining ball mill liners is about 8 months, and frequent downtimes occur due to liner wear and loss of effectiveness, with liner replacement accounting for about 6% of the total cost, resulting in huge economic losses. This paper focuses on a Φ305 mm × 150 mm experimental ball mill, using the discrete element software Rocky Discrete Element Method (DEM) (software version number Rocky 2022 R2) for simulation modeling analysis. With Φ10 mm and Φ20 mm mono-size particle simulations serving as reference groups, this study investigates the motion states and liner abrasion patterns under different liner heights for both sizes of grinding media in Equilibrium Quality Manufacturer (EQM) and Original Equipment Manufacturer (OEM) gradations. The results indicate that the impact of liner height on the wear of the ball mill liners is related to the size and gradation of the grinding media. The degree of liner wear from highest to lowest is as follows: EQM > Φ20 mm > OEM > Φ10 mm. Due to the effect of the cylinder end cap, the wear at the axial center of the ball mill liner is more severe than at both ends, and the wear on the facing side of the liner is more severe than on the backside. A thorough study of the influence of ball mill grinding media gradation on the wear pattern of liners is of great theoretical significance for optimizing liner structures, improving grinding efficiency, and promoting energy saving and cost reduction in ball mills. This study provides theoretical guidance for understanding the mechanisms behind liner wear in ball mills and predicting the liner lifespan.
Keywords