Glasnik Srpskog Geografskog Društva (Jan 2023)
Assessment of the effect of land use and land cover (LULC) change on depth runoff: Case study of Skikda floods event
Abstract
Land use and land cover changes in coastal cities can influence drainage sys-tems in ways that affect surface overflows and the infiltration potential of a land surface, making flooding one of the drivers. This research aims to demonstrate the spatiotemporal dynamics of LULC and their combined impact on rainfall and flood height in Skikda, Algeria. The research uses remote sensing (RS) and geographic information systems (GIS) to determine the type and location of LULC changes in Skikda. The supervised classification methodology used the maximum likelihood technique (MCL). Changes were identified in five categories: built-up areas, green spaces, bodies of water, agriculture, and vacant land. In Q-GIS 3.28.2, Landsat 4-5 (TM) data from 1984 and 2004 and Landsat 8-9 (OLI)/TIRS data from 2019 were used based on the United States Geological Survey (USGS). The results show that the impervious built-up area has changed significantly (44.01%) due to massive urbanization and rapid industrialization, which would affect heavy rainfall activity and increase flood height due to the intense imperviousness of the affected soil (from 27% to 44%). The precipitation and flood height were examined and compared with observations to investigate the impact of the LULC model modification during the flood. The comparison of three flood events (1984, 2004, and 2019) revealed that the change in the LULC model is the main factor increasing flood risk in the study area. This study demonstrates the importance of considering temporal changes in land use, land cover, rainfall, and flood height when mapping floods in urban cities.
Keywords