Inventions (May 2018)

Experimental Study of an Organic Rankine Cycle Using n-Hexane as the Working Fluid and a Radial Turbine Expander

  • Vignesh Pethurajan,
  • Suresh Sivan

DOI
https://doi.org/10.3390/inventions3020031
Journal volume & issue
Vol. 3, no. 2
p. 31

Abstract

Read online

Conversion of low-grade waste heat to electrical energy paves the way to reducing environmental pollution. This work focuses on the experimental study of an organic Rankine cycle (ORC) with an n-hexane working fluid and radial turbine expander. The heat source is varied from 120 to 190 °C with a mass flow rate of 0.10 to 0.50 kg/s and pressure between 12 and 15 bar. The heat-source temperature has a direct impact on turbine performance. Increase in the mass flow rate of the working fluid led to an increase in pressure and temperature at the turbine inlet. The rise in turbine speed enhanced electrical efficiency while cutting down isentropic efficiency. The optimum speed of the turbine increased with increasing in turbine inlet temperature. Superheating leads to an increase in power along with a decrease in isentropic efficiency. The thermal efficiency followed an increasing trend when there was an increase in turbine inlet temperature and mass flow rate and decreased with an increase in turbine speed. The electrical efficiency increased for all three cases. The system was found to have a highest thermal efficiency of 5.57% with a power of 1.75 kW. Based on the experimental results, it can be concluded that an ORC with n-hexane as the working fluid and a radial turbine as the expander can be used in low-temperature waste heat recovery systems to produce power.

Keywords