Nanomaterials (Sep 2022)

Synergetic Effect of Hybrid Conductive Additives for High-Capacity and Excellent Cyclability in Si Anodes

  • Byeong-Il Yoo,
  • Han-Min Kim,
  • Min-Jae Choi,
  • Jung-Keun Yoo

DOI
https://doi.org/10.3390/nano12193354
Journal volume & issue
Vol. 12, no. 19
p. 3354

Abstract

Read online

Silicon is a promising anode material that can increase the theoretical capacity of lithium-ion batteries (LIBs). However, the volume expansion of silicon remains a challenge. In this study, we employed a novel combination of conductive additives to effectively suppress the volume expansion of Si during charging/discharging cycles. Rather than carbon black (CB), which is commonly used in SiO anodes, we introduced single-walled carbon nanotubes (SWCNTs) as a conductive additive. Owing to their high aspect ratio, CNTs enable effective connection of SiO particles, leading to stable electrochemical operation to prevent volume expansion. In addition, we explored a combination of CB and SWCNTs, with results showing a synergetic effect compared to a single-component of SWCNTs, as small-sized CB particles can enhance the interface contact between the conductive additive and SiO particles, whereas SWCNTs have limited contact points. With this hybrid conductive additive, we achieved a stable operation of full-cell LIBs for more than 200 cycles, with a retention rate of 91.1%, whereas conventional CB showed a 74.0% specific capacity retention rate.

Keywords