Viruses (Aug 2020)
Employing Molecular Phylodynamic Methods to Identify and Forecast HIV Transmission Clusters in Public Health Settings: A Qualitative Study
Abstract
Molecular HIV surveillance is a promising public health strategy for curbing the HIV epidemic. Clustering technologies used by health departments to date are limited in their ability to infer/forecast cluster growth trajectories. Resolution of the spatiotemporal dynamics of clusters, through phylodynamic and phylogeographic modelling, is one potential strategy to develop a forecasting tool; however, the projected utility of this approach needs assessment. Prior to incorporating novel phylodynamic-based molecular surveillance tools, we sought to identify possible issues related to their feasibility, acceptability, interpretation, and utility. Qualitative data were collected via focus groups among field experts (n = 17, 52.9% female) using semi-structured, open-ended questions. Data were coded using an iterative process, first through the development of provisional themes and subthemes, followed by independent line-by-line coding by two coders. Most participants routinely used molecular methods for HIV surveillance. All agreed that linking molecular sequences to epidemiological data is important for improving HIV surveillance. We found that, in addition to methodological challenges, a variety of implementation barriers are expected in relation to the uptake of phylodynamic methods for HIV surveillance. The participants identified several opportunities to enhance current methods, as well as increase the usability and utility of promising works-in-progress.
Keywords