Scientific Reports (Sep 2023)

Glycerol biosynthetic pathway plays an essential role in proliferation and antioxidative defense in the human enteric protozoan parasite Entamoeba histolytica

  • Ghulam Jeelani,
  • Emmanuel Oluwadare Balogun,
  • Afzal Husain,
  • Tomoyoshi Nozaki

DOI
https://doi.org/10.1038/s41598-023-40670-z
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Amebiasis is caused by the protozoan parasite Entamoeba histolytica. Treatment options other than metronidazole and its derivatives are few, and their low efficacy against asymptomatic cyst carriers, and experimental evidence of resistance in vitro justify the discovery/repurposing campaign for new drugs against amebiasis. Global metabolic responses to oxidative stress and cysteine deprivation by E. histolytica revealed glycerol metabolism may represent a rational target for drug development. In this study using 14C-labelled glucose, only 11% of the total glucose taken up by E. histolytica trophozoites is incorporated to lipids. To better understand the role of glycerol metabolism in this parasite, we focused on characterizing two important enzymes, glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (G3PDH). Recombinant GK was biochemically characterized in detail, while G3PDH was not due to failure of protein expression and purification. GK revealed novel characteristics and unprecedented kinetic properties in reverse reaction. Gene silencing revealed that GK is essential for optimum growth, whereas G3PDH is not. Gene silencing of G3PDH caused upregulated GK expression, while that of GK resulted in upregulation of antioxidant enzymes as shown by RNA-seq analysis. Although the precise molecular link between GK and the upregulation of antioxidant enzymes was not demonstrated, the observed increase in antioxidant enzyme expression upon GK gene silencing suggests a potential connection between GK and the cellular response to oxidative stress. Together, these results provide the first direct evidence of the biological importance and coordinated regulation of the glycerol metabolic pathways for proliferation and antioxidative defense in E. histolytica, justifying the exploitation of these enzymes as future drug targets.