IEEE Photonics Journal (Jan 2021)

Fabrication and Characterization of Dual Functional InGaN LED Arrays as the Optical Transmitter and Receiver for Optical Wireless Communications

  • Chia-Lung Tsai,
  • Tong-Wen Wang,
  • Yi-Chen Lu,
  • Atanu Das,
  • Sheng Hsiung Chang,
  • Sun-Chien Ko

DOI
https://doi.org/10.1109/JPHOT.2021.3069841
Journal volume & issue
Vol. 13, no. 2
pp. 1 – 11

Abstract

Read online

The feasibility of using InGaN/GaN multiple-quantum-well light-emitting diode arrays (LED arrays) as photodiodes (PDs) is investigated experimentally in addition to their light emitting function. Two discrete LED arrays are produced from one 4 × 4 LED array with a parallel-connected pixel configuration. Such compact designs are useful for light emission or detection at the transmitting/receiving terminals of optical wireless communication systems. Despite 4 × 2 LED arrays achieving a light output power of 67.4 mW at 250 mA, they exhibit an optical responsivity (detectivity) of 0.183 A/W (1.61 × 1012 cm Hz1/2W−1) under ultraviolet light illumination (λ = 380 nm) at zero bias. For 4 × 2 LED arrays, the presence of an appreciable ultraviolet light response, together with a high 3-dB bandwidth (∼8 MHz) for modulated light detection, allowed us to build a 15 Mbit/s directed optical link with these LEDs functioning as both the optical transmitter and the receiver. Finally, the unitary LED array-based optical link is capable of real-time transmission of digital audio signals (data rate = 6 Mbit/s) at a propagation distance of 100 cm in free space even though some of the constituent pixels are inactive for light detection.

Keywords