Journal of Materials Research and Technology (Nov 2021)

Decellularized and biological scaffolds in dental and craniofacial tissue engineering: a comprehensive overview

  • Mohsen Yazdanian,
  • Arian Hesam Arefi,
  • Mostafa Alam,
  • Kamyar Abbasi,
  • Hamid Tebyaniyan,
  • Elahe Tahmasebi,
  • Reza Ranjbar,
  • Alexander Seifalian,
  • Mahdi Rahbar

Journal volume & issue
Vol. 15
pp. 1217 – 1251

Abstract

Read online

Dental problems including cavities, periodontitis, apical periodontitis, and pulpitis are among the most cost-consuming burden for both patients and the health care system all over the world. The pathological consequences of these complications importantly lead to tooth loss causing functional and psychological conflictions for patients. The traditional treatment includes removing the impaired tooth or its restoration using hard restorative materials that are supposed to mimic the tissue of enamel or dentine whereas these materials cannot simulate the chemical, biological, or physical characteristics of a natural tooth. Therefore, different daily-progressing methods of tissue engineering (TE) are being propounded as new and promising approaches for managing dentistry conflicts. TE is now considered almost a practical, reproducible, and clinically safe therapy for regenerating different oral and dental tissues including either the whole dental organ or its various anatomical parts. TE necessarily constitutes three angles of stem cell (SC), scaffold, and essential growth factors (GFs). Generally, scaffolds can be made of decellularized scaffolds (usually containing the extra-cellular matrix (ECM) of target organs and tissues) or biologic scaffolds (containing natural polymer). The current study aims to review the studies conducted in the recent decade on decellularized and biological scaffolds and their potential applications in modern regenerative dentistry.

Keywords