پژوهش‌های حفاظت آب و خاک (May 2017)

بررسی عملکرد مدل برنامه ریزی بیان ژن با روش های پیش‌پردازش داده ها جهت مدل سازی جریان رودخانه

  • اباذر سلگی,
  • حیدر زارعی,
  • محمدرضا گلابی

DOI
https://doi.org/10.22069/jwfst.2017.11353.2573
Journal volume & issue
Vol. 24, no. 2
pp. 185 – 201

Abstract

Read online

سابقه و هدف: نیاز روزافزون به آب سبب گردیده است که برنامه‌ریزی‌های مدیریتی به‌منظور کنترل مصرف آب در آینده از اهمیت بیشتری برخوردار باشد. با پیش‌بینی جریان رودخانه‌ها علاوه بر مدیریت بهره‌برداری از منابع آب، می‌توان حوادث طبیعی نظیر سیل و خشکسالی را نیز پیش‌بینی و مهار نمود. به همین دلیل برآورد صحیح و دقیق جریان رودخانه با استفاده از مدل‌های مختلف یکی از موضوعاتی است که در منابع آب مورد بررسی پژوهشگران می‌باشد. مدل‌های هوشمند جهت پیش بینی جریان رودخانه توسط پژوهشگران مختلف به کار رفته‌اند. یکی از این مدل‌ها که عملکرد خوبی از خود نشان داده است مدل برنامه‌ریزی بیان ژن می‌باشد. اخیراً شیوه استفاده از مدل‌های هوشمند به صورت ترکیبی مورد پذیرش قرار گرفته است که جهت انجام این کار معمولاً از تبدیل موجک استفاده می‌شود.مواد و روش‌ها : در این مطالعه از مدل برنامه‌ریزی بیان ژن(GEP) برای مدل‌سازی جریان در مقیاس‌های روزانه و ماهانه در رودخانه گاماسیاب استفاده شد. برای این منظور از داده‌های بارش، دما، تبخیر و جریان رودخانه گاماسیاب در ایستگاه وراینه با یک دوره آماری 43 ساله (1390-1348) استفاده شد. برای افزایش عملکرد مدل از دو روش پیش‌پردازش داده‌ها یعنی تبدیل موجک(Wavelet Transform) و تجزیه به مؤلفه‌های اصلی(PCA) استفاده شد. بدین‌صورت که سیگنال اولیه هر یک از پارامترهای ورودی با استفاده از تبدیل موجک تجزیه شد. سپس برای مشخص کردن زیرسیگنال‌های مهم از روش تجزیه به مؤلفه‌های اصلی استفاده شده و زیرسیگنال‌های مهم به عنوان ورودی به مدل‌ برنامه‌ریزی بیان ژن وارد شد تا مدل‌ ترکیبی برنامه‌ریزی بیان ژن-موجک(WGEP) حاصل گردید. یافته‌ها: بررسی ساختارهای مختلف برای مدل برنامه‌ریزی بیان ژن نشان داد که عملکرد مدل در دوره روزانه خوب بوده ولی در دوره ماهانه عملکرد کاهش یافته است. مقایسه مدل ترکیبی برنامه‌ریزی بیان ژن-موجک با مدل برنامه‌ریزی بیان ژن نشان داد که عملکرد مدل ترکیبی در هر دو دوره زمانی روزانه و ماهانه از مدل ساده بهتر بوده است. دلیل این امر به خاطر پیش پردازشی است که روی داده‌ها پیاده شده بود. این در حالی است که نتایج مدل ترکیبی در دوره روزانه حدود 4 درصد و در دوره ماهانه 23 درصد ضریب تعیین مدل را افزایش داد. همچنین با توجه به تعداد زیاد زیرسیگنال‌ها به کار بردن روش PCA باعث افزایش سرعت اجرای برنامه شد. نتیجه‌گیری: استفاده از روش‌های پیش‌پردازش داده‌ها باعث افزایش عملکرد مدل‌ شده است و استفاده از روشPCA به عنوان یک ابزار کمکی برای تبدیل موجک موجب افزایش سرعت و دقت مدل شده است. به طور کلی نتایج این مطالعه نشان داد که می‌توان از ترکیب مدل برنامه‌ریزی بیان ژن با تبدیل موجک به عنوان یک ابزار مناسب برای مدل‌سازی و پیش‌بینی جریان رودخانه گاماسیاب بهره برد.

Keywords