Energies (Aug 2024)
Assessment of Boil-Off Losses and Their Cost Implication during Liquid Hydrogen Tank Filling with and without Precooling
Abstract
During liquid hydrogen bunkering into a cryogenic tank, boil-off losses occur due to the high thermal gradient between liquid hydrogen and the warm surface of the tank. This leads to gaseous hydrogen release. Such losses constitute a significant drawback in using hydrogen as a fuel for maritime applications where bunkering operations are regularly carried out, thereby constituting a significant loss along the liquid hydrogen pathway. Due to the inherently low temperature of liquid hydrogen, boil-off losses are always present. Some boil-off losses cannot be eliminated because they are thermodynamically constrained or intrinsic to the system’s design. Boil-off recovery methods can be implemented to capture the boil-off; however, those solutions come with an additional cost and system complexities. Hence, this paper investigates the feasibility of minimizing boil-off losses during the first bunkering of liquid hydrogen or refilling of liquid hydrogen in an empty cryogenic tank by first precooling the cryogenic tank surface to decrease the thermal gradient between the liquid hydrogen and the tank surface/wall. In this paper, different media for precooling a cryogenic tank are evaluated to assess the boil-off reduction potential and the associated costs in order to identify the most suitable solution. The assessment has been carried out based on analytical formulation.
Keywords