Animal (Aug 2022)
Individual methane emissions (and other gas flows) are repeatable and their relationships with feed efficiency are similar across two contrasting diets in growing bulls
Abstract
In the current economic and environmental context, the selection of livestock phenotypes combining high feed efficiency (FE) and low greenhouse gas emissions is interesting. This study aimed to quantify methane (CH4) emissions and other gas flows (carbon dioxide (CO2) and dihydrogen (H2) emissions, oxygen (O2) consumption) in growing bulls fed with two contrasting diets in order to (i) evaluate the persistence of individual variability in gas flows through time, and (ii) assess the inter-individual relationship between gas flows and FE across diets. Charolais bulls were fattened for 6 months during two consecutive years in two independent batches (50–51 per year). In each batch, half of the animals received a total mixed ad libitum ration either based on maize silage (62% dietary DM) or high-starch concentrate (MS-S), and half based on grass silage (59% dietary DM) and high-fibre concentrate (GS-F). The absolute gas flows (g/d) were individually measured with 2 GreenFeed systems during 88 days (group 1) and 64 days (group 2). All gas flows were also expressed in g/kg DM intake (gas yield), in g/kg average daily gain (CH4 intensity) and residual of daily emissions for CH4 (R CH4). Different FE metrics (residual feed intake (RFI), residual gain (RG) and feed conversion efficiency (FCE)) were investigated during the same period. The relationships between gas flows and FE metrics were tested by linear regression with the diet as fixed effect. For both diets, we observed a consistent individual variability over the measurement period for absolutes values (g/d) of CH4, CO2, and O2 (repeatability >0.7 for GS-F and >0.6 for MS-S). Gas flows (g/d) were positively correlated with RFI with both diets: animals that ingested food in excess of their theoretical maintenance and growth requirements emitted more CH4, CO2 and consumed more O2. The positive relationship between absolute CH4 emissions and RFI highlighted the interest for low-CH4 emitters and efficient growing bulls when fed with high-energy diets rich in starch or fibre. For both diets, RCH4, CH4 yield and CH4 intensity were not related to RFI whereas a significant negative relationship was reported between CH4 intensity and RG, and FCE. These data suggest that intake is the main driver of the phenotypic relationships between CH4 traits and RFI. Further studies including larger numbers of animals on highly contrasting energy diets are needed to investigate the underlying biological regulatory mechanisms of the methanogenic potential of an animal in relation to production traits.