Majallah-i dānishgāh-i ̒ulūm-i pizishkī-i Arāk (Jun 2016)

Early Detection of Amyotrophic Lateral Sclerosis (ALS) using the Gait Motor Signal Frequency Analysis

  • Behzad Abedi,
  • Ataollah Abbasi,
  • Yashar Sarbaz,
  • Atefeh Goshvarpour

Journal volume & issue
Vol. 19, no. 3
pp. 54 – 61

Abstract

Read online

Abstract Background: ALS is a progressive neuro-muscular disease, which is characterized by motor neuron loss in the Central Nervous System (CNS) and Peripheral Nervous System (PNS). Up to now, no accurate clinical method for diagnosis of the disease have been provided. In most cases, ALS patients are unable to walk normally due to abnormalities in the nervous system. For this reason, one of the most appropriate methods in the diagnosis of ALS from other neurological diseases or from healthy volunteers is the gait motor signal analysis. Materials and Methods: In this study, gait signals available in Physionet database have been used. The database consists of 13 patients with ALS (ALS1, ALS2, …, ALS13) and 16 normal subjects (CO1, CO2, …, CO16). The patients participating in this study had no history of any psychiatric disorders and did not use any assistive device for walking, like wheelchair. The power spectrum of stride, swing, and stance of normal subjects and patients was computed for both left and right legs. To provide appropriate inputs for the classifier, the frequency band of the power spectrum of all signals was divided into eight equal parts. The area of all regions was computed. Three frequency band of the lower range of power spectra selected as inputs of the classifier. Results: In this study, power spectra, as frequency attributes, were used to explore probable differences of time series in both patients and healthy subjects. Conclusion: Artificial Neural Network was used to classify normal and ALS groups with the accuracy of 83% for the test data set. It seems that the present algorithm can be used in discriminating patients from normal subjects in the early stages of the disease.

Keywords