Arabian Journal of Mathematics (Dec 2017)

Congruences modulo 8 for $$(2,\, k)$$ (2,k) -regular overpartitions for odd $$k > 1$$ k>1

  • Chandrashekar Adiga,
  • M. S. Mahadeva Naika,
  • D. Ranganatha,
  • C. Shivashankar

DOI
https://doi.org/10.1007/s40065-017-0195-z
Journal volume & issue
Vol. 7, no. 2
pp. 61 – 75

Abstract

Read online

Abstract In this paper, we study various arithmetic properties of the function $$\overline{p}_{2,\,\, k}(n)$$ p¯2,k(n) , which denotes the number of $$(2,\,\, k)$$ (2,k) -regular overpartitions of n with odd $$k > 1$$ k>1 . We prove several infinite families of congruences modulo 8 for $$\overline{p}_{2,\,\, k}(n)$$ p¯2,k(n) . For example, we find that for all non-negative integers $$\beta , n$$ β,n and $$k\equiv 1\pmod {8}$$ k≡1(mod8) , $$\overline{p}_{2,\,\, k}(2^{1+\beta }(16n+14))\equiv ~0\pmod {8}$$ p¯2,k(21+β(16n+14))≡0(mod8) .

Keywords