Biomedicines (Jan 2023)
Whole-Exome Sequencing Identified Rare Genetic Variants Associated with Undervirilized Genitalia in Taiwanese Pediatric Patients
Abstract
Disorders/differences of sex development (DSDs) are a group of rare and phenotypically variable diseases. The underlying genetic causes of most cases of 46XY DSDs remains unknown. Despite the advent of genetic testing, current investigations of the causes of DSDs allow genetic-mechanism identification in about 20–35% of cases. This study aimed primarily to establish a rapid and high-throughput genetic test for undervirilized males with and without additional dysmorphic features. Routine chromosomal and endocrinological investigations were performed as part of DSD evaluation. We applied whole-exome sequencing (WES) complemented with multiplex ligation-dependent probe amplification to seek explainable genetic causes. Integrated computing programs were used to call and predict the functions of genetic variants. We recruited 20 patients and identified the genetic etiologies for 14 (70%) patients. A total of seven of the patients who presented isolated DSD phenotypes were found to have causative variants in the AR, MAP3K1, and FLNA genes. Moreover, the other seven patients presented additional phenotypes beyond undervirilized genitalia. Among them, two patients were compatible with CHARGE syndrome, one with Robinow syndrome, and another three with hypogonadotropic hypogonadism. One patient, who carried a heterozygous FLNA mutation, also harbored a heterozygous PTPN11 mutation and thus presented some phenotypes of Noonan syndrome. We identified several genetic variants (12 nonsense mutations and one microdeletion) that account for syndromic and nonsyndromic DSDs in the Taiwanese population. The identification of these causative genes extended our current understanding of sex development and related congenital disorders.
Keywords