Current Issues in Molecular Biology (Aug 2021)

Active Ingredients from <i>Euodia ruticarpa</i> Steam Distilled Essential Oil Inhibit PC-3 Prostate Cancer Cell Growth via Direct Action and Indirect Immune Cells Conditioned Media In Vitro

  • Tzu-He Yeh,
  • Jin-Yuarn Lin

DOI
https://doi.org/10.3390/cimb43020071
Journal volume & issue
Vol. 43, no. 2
pp. 996 – 1018

Abstract

Read online

Active constituents isolated from Euodia ruticarpa (ER) steam distilled essential oil (SDEO) against PC-3 prostate cancer cell growth remain unclear. To clarify the puzzle, ER SDEO was extracted and further resolved into six isolated fractions ERF1–F6 with Sephadex LH-20 gel filtration chromatography to analyze their biological activities. Active ingredients in the isolated fractions were analyzed with GC-MS. Potential isolated fractions were selected to treat PC-3 cells with direct action and indirect treatment by mouse splenocyte- (SCM) and macrophage-conditioned media (MCM). The relationship between PC-3 cell viabilities and corresponding total polyphenols, flavonoid contents as well as Th1/Th2 cytokine profiles in SCM was analyzed using the Pearson product–moment correlation coefficient (r). As a result, ERF1–F3 was abundant in total polyphenols and flavonoids contents with diverse active ingredients. Treatments with ERF1–F3 at appropriate concentrations more or less inhibit PC-3 cell growth in a direct action manner. Only SCM, respectively, cultured with ER SDEO and ERF1–F3 markedly enhanced the effects to inhibit PC-3 cell growth, suggesting that secretions by splenocytes might involve anti-PC-3 effects. There are significantly negative correlations between PC-3 cell viabilities and IL-2, IL-10 as well as IL-10/IL-2 ratios in the corresponding SCM. Total polyphenol and flavonoid contents in the media cultured with ER SDEO isolated fractions positively correlated with IL-10 (Th2) and IL-10/IL-2 (Th2/Th1) cytokine secretion ratios by splenocytes, indicating that polyphenol and flavonoid components in ER SDEO isolated fractions promote Th2-polarized and anti-inflammatory characteristics. These new findings concluded that the inhibitory effects against PC-3 prostate cancer cell growth are attributed to active anti-inflammatory ingredients in ER SDEO and its active ERF1–F3 fractions through direct action and indirect treatment by modulating splenocytes’ cytokine secretion profiles.

Keywords