Scientific Reports (Feb 2024)

Modified intraocular lens power selection method according to biometric subgroups Eom IOL power calculator

  • Youngsub Eom,
  • So Hyeon Bae,
  • Seul Ki Yang,
  • Dong Hyun Kim,
  • Jong Suk Song,
  • David L. Cooke

DOI
https://doi.org/10.1038/s41598-024-54346-9
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 9

Abstract

Read online

Abstract This study evaluates the accuracy of a newly developed intraocular lens (IOL) power calculation method that applies four different IOL power calculation formulas according to 768 biometric subgroups based on keratometry, anterior chamber depth, and axial length. This retrospective cross-sectional study was conducted in at Korea University Ansan Hospital. A total of 1600 eyes from 1600 patients who underwent phacoemulsification and a ZCB00 IOL in-the-bag implantation were divided into two datasets: a reference dataset (1200 eyes) and a validation dataset (400 eyes). Using the reference dataset and the results of previous studies, the Eom IOL power calculator was developed using 768 biometric subgroups. The median absolute errors (MedAEs) and IOL Formula Performance Indexes (FPIs) of the Barrett Universal II, Haigis, Hoffer Q, Holladay 1, Ladas Super, SRK/T, and Eom formulas using the 400-eye validation dataset were compared. The MedAE of the Eom formula (0.22 D) was significantly smaller than that of the other four formulas, except for the Barrett Universal II and Ladas Super formulas (0.24 D and 0.23 D, respectively). The IOL FPI of the Eom formula was 0.553, which ranked first, followed by the Ladas Super (0.474), Barrett Universal II (0.470), Holladay 1 (0.444), Hoffer Q (0.396), Haigis (0.392), and SRK/T (0.361) formulas. In conclusion, the Eom IOL power calculator developed in this study demonstrated similar or slightly better accuracy than the Barrett Universal II and Ladas Super formulas and was superior to the four traditional IOL power calculation formulas.

Keywords