پژوهش‌های حفاظت آب و خاک (Sep 2017)

مقایسه عملکرد مدلهای ماشین بردار پشتیبان، برنامه ریزی بیان ژن وشبکه بیزین در پیش بینی جریان رودخانه ها (مطالعه موردی: رودخانه کشکان)

  • رضا دهقانی,
  • حجت الله یونسی,
  • حسن ترابی پوده

DOI
https://doi.org/10.22069/jwfst.2017.12398.2701
Journal volume & issue
Vol. 24, no. 4
pp. 161 – 177

Abstract

Read online

سابقه و هدف: پیش‌بینی جریان رودخانه‌ها یکی از مهم‌ترین موارد کلیدی در مدیریت و برنامه‌ریزی منابع آب‌ به‌ویژه اتخاذ تصمیمات صحیح در مواقع سیلاب و بروز خشکسالی‌ها، است. برای پیش‌بینی میزان جریان رودخانه‌ها رویکردهای متنوعی در هیدرولوژی معرفی‌شده است که مدل‌های هوشمند از مهمترین آن‌ها می‌باشند. در این پژوهش جهت ارزیابی دقت مدل‌ها در پیش‌بینی جریان رودخانه، از داده‌های روزانه حوضه آبریز کشکان واقع در استان لرستان استفاده‌شده است. جهت مدلسازی جریان روزانه رودخانه کشکان از مدلهای ماشین بردار پشتیبان، برنامه‌ریزی بیان ژن و شبکه بیزین استفاده شد و نتایج برای بررسی صحت مدل‌های موردمطالعه با یکدیگر مقایسه گردید. در پژوهش‌های معدودی هر یک از مدل‌های بیان‌شده در پیش‌بینی دبی جریان روزانه موردبررسی قرارگرفته است اما هدف این پژوهش بررسی همزمان این مدل‌ها در یک حوضه برای پیش‌بینی جریان روزانه رودخانه می‌باشد.مواد و روش: در این پژوهش رودخانه کشکان واقع در استان لرستان به‌عنوان منطقه موردمطالعه انتخاب‌شده و جریان روزانه مشاهداتی این حوضه در ایستگاه هیدرومتری پلدختر جهت واسنجی و اعتبارسنجی مدل‌ها بکار گرفته شد. برای این منظور، در ابتدا 80 درصد از داده‌های جریان روزانه (1390-1383) برای واسنجی مدل‌ها انتخاب‌شده و 20 درصد داده‌ها (1393-1391) جهت اعتبارسنجی مدل‌ها استفاده شد. برنامه‌ریزی ژن یک تکنیک برنامه‌ریزی خودکار است که راه‌حل مساله را با استفاده از برنامه‌ریزی کامپیوتر ارائه کرده و عضوی از خانواده الگوریتم تکاملی می‌باشد. ماشین بردار پشتیبان نیز یک سیستم یادگیری کارآمد بر مبنای تئوری بهینه‌سازی مقید است. همچنین شبکه بیزین، نمایش بامعنی روابط نامشخص مابین پارامترها در یک فرآیند می‌باشد و گرافی جهت‌دار غیر حلقوی از گره‌ها برای نمایش متغیرهای تصادفی و کمان‌ها برای نمایش روابط احتمالی مابین متغیرها به شمار می‌رود. معیارهای ضریب همبستگی، ریشه میانگین مربعات خطا، میانگین قدر مطلق خطا برای ارزیابی و نیز مقایسه عملکرد مدل‌ها در این پژوهش مورداستفاده قرار گرفت. یافته‌ها: نتایج نشان داد هر سه مدل شبکه بیزین، برنامه‌ریزی بیان ژن و ماشین بردار پشتیبان، در ساختاری متشکل از 1 تا 5 تأخیر زمانی نتایج بهتری نسبت به سایر ساختارها ارائه می‌دهد. همچنین با توجه به معیار ارزیابی نتیجه شد که از بین مدل‌های به‌کاررفته مدل ماشین بردار پشتیبان، بیشترین دقت 910/0= R و کمترین ریشه میانگین مربعات خطا l/s 2RMSE= و کمترین میانگین قدر مطلق خطاl/s 1MAE= در مرحله صحت سنجی را دارا می‌باشد. همچنین این مدل در تخمین مقادیر حداقل، حداکثر و میانی عملکرد خوبی از خود نشان داده است.نتیجه‌گیری: درمجموع نتایج نشان داد مدل ماشین بردار پشتیبان عملکرد بهتری نسبت به مدل‌های شبکه بیزین و برنامه‌ریزی بیان ژن دارد. بنابراین مدل ماشین بردار پشتیبان می‏تواند در زمینه پیش‌بینی جریان روزانه رودخانه مؤثر بوده و در نوبه خود برای تسهیل توسعه و پیاده‌سازی استراتژی‌های مدیریت آب‌های سطحی مفید باشد. و گامی در اتخاذ تصمیمات مدیریتی در جهت بهبود کمیت منابع آب‌های سطحی ایجاد نماید.

Keywords