Scientific Reports (Oct 2024)

Experimental investigation of mechanical properties of structural interlayers for rock masses during drilling process

  • Xinxing Liu

DOI
https://doi.org/10.1038/s41598-024-73425-5
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 23

Abstract

Read online

Abstract With the continuous development of underground engineering construction in China, it is particularly important to study the identification of structural plane characteristics of rock masses. In this study, three types of pseudo-rock specimens with structural plane interlayers were fabricated to analyze the patterns of drilling parameter changes in rock bodies with structural planes during the drilling process and to explore the characterization and identification methods of rock body structural planes. Gneiss, granite, and sandstone were used as rock materials, with gypsum mortar as the interlayer material for the structural planes in these three types of specimens. The indoor digital drilling equipment was utilized for conducting indoor digital drilling experiments. The variation patterns of drilling parameters in rock bodies with structural surfaces under different interlayer inclinations and thicknesses were analyzed. The relationship between the ratio of the change in rotational speed and drilling speed during the stable phase of the upper rock mass and the peak torque and peak drilling pressure has been established. The relationship between the structural plane inclination angle and the ratio of change in rotational speed and drilling speed has been determined. By utilizing the variation in these ratios, the impacts of the structural plane inclination angle and the thickness of the structural plane on the peak torque and peak drilling pressure have been elucidated. The research results provide a theoretical basis for the stability evaluation of rock masses with structural planes under drilling action.

Keywords