Scientific Reports (Jul 2023)
MRI evaluation of foraminal changes in the cervical spine with assistance of a novel compression device
Abstract
Abstract Standard supine Magnetic Resonance Imaging (MRI) does not acquire images in a position where most patients with intermittent arm radiculopathy have symptoms. The aim of this study was to test the feasibility of a new compression device and to evaluate image quality and foraminal properties during a Spurling test under MRI acquisition. Ten asymptomatic individuals were included in the study (6 men and 4 women; age range 27 to 55 years). First, the subjects were positioned in the cervical compression device in a 3 T MRI scanner, and a volume T2 weighted (T2w) sequence was acquired in a relaxed supine position (3 min). Thereafter, the position and compressive forces on the patient’s neck (provocation position) were changed by maneuvering the device from the control room, with the aim to simulate a Spurling test, causing a mild foraminal compression, followed by a repeated image acquisition (3 min). A radiologist measured the blinded investigations evaluating cervical lordosis (C3–C7), foraminal area on oblique sagittal images and foraminal cross-distance in the axial plane. A total of three levels (C4–C7) were measured on the right side on each individual. Measurements were compared between the compressed and relaxed state. Reliability tests for inter- and intraclass correlation were performed. The device was feasible to use and well tolerated by all investigated individuals. Images of adequate quality was obtained in all patients. A significant increase (mean 9.4, p = 0.013) in the cervical lordosis and a decreased foraminal cross-distance (mean 32%, p < 0.001) was found, during the simulated Spurling test. The area change on oblique sagittal images did not reach a statistically significant change. The reliability tests on the quantitative measures demonstrated excellent intraobserver reliability and moderate to good interobserver reliability. Applying an individualized provocation test on the cervical spine, which simulates a Spurling test, during MRI acquisition was feasible with the novel device and provided images of satisfactory quality. MRI images acquired with and without compression showed changes in cervical lordosis and foraminal cross distance indicating the possibility of detecting changes of the foraminal properties. As a next step, the method is to be tested on symptomatic patients.