PLoS ONE (Jan 2019)

Methods of olfactory ensheathing cell harvesting from the olfactory mucosa in dogs.

  • Daisuke Ito,
  • Darren Carwardine,
  • Jon Prager,
  • Liang Fong Wong,
  • Masato Kitagawa,
  • Nick Jeffery,
  • Nicolas Granger

DOI
https://doi.org/10.1371/journal.pone.0213252
Journal volume & issue
Vol. 14, no. 3
p. e0213252

Abstract

Read online

Olfactory ensheathing cells are thought to support regeneration and remyelination of damaged axons when transplanted into spinal cord injuries. Following transplantation, improved locomotion has been detected in many laboratory models and in dogs with naturally-occurring spinal cord injury; safety trials in humans have also been completed. For widespread clinical implementation, it will be necessary to derive large numbers of these cells from an accessible and, preferably, autologous, source making olfactory mucosa a good candidate. Here, we compared the yield of olfactory ensheathing cells from the olfactory mucosa using 3 different techniques: rhinotomy, frontal sinus keyhole approach and rhinoscopy. From canine clinical cases with spinal cord injury, 27 biopsies were obtained by rhinotomy, 7 by a keyhole approach and 1 with rhinoscopy. Biopsy via rhinoscopy was also tested in 13 cadavers and 7 living normal dogs. After 21 days of cell culture, the proportions and populations of p75-positive (presumed to be olfactory ensheathing) cells obtained by the keyhole approach and rhinoscopy were similar (~4.5 x 106 p75-positive cells; ~70% of the total cell population), but fewer were obtained by frontal sinus rhinotomy. Cerebrospinal fluid rhinorrhea was observed in one dog and emphysema in 3 dogs following rhinotomy. Blepharitis occurred in one dog after the keyhole approach. All three biopsy methods appear to be safe for harvesting a suitable number of olfactory ensheathing cells from the olfactory mucosa for transplantation within the spinal cord but each technique has specific advantages and drawbacks.