Metabolites (Apr 2022)

In Vivo Renal Lipid Quantification by Accelerated Magnetic Resonance Spectroscopic Imaging at 3T: Feasibility and Reliability Study

  • Ahmad A. Alhulail,
  • Mahsa Servati,
  • Nathan Ooms,
  • Oguz Akin,
  • Alp Dincer,
  • M. Albert Thomas,
  • Ulrike Dydak,
  • Uzay E. Emir

DOI
https://doi.org/10.3390/metabo12050386
Journal volume & issue
Vol. 12, no. 5
p. 386

Abstract

Read online

A reliable and practical renal-lipid quantification and imaging method is needed. Here, the feasibility of an accelerated MRSI method to map renal fat fractions (FF) at 3T and its repeatability were investigated. A 2D density-weighted concentric-ring-trajectory MRSI was used for accelerating the acquisition of 48 × 48 voxels (each of 0.25 mL spatial resolution) without respiratory navigation implementations. The data were collected over 512 complex-FID timepoints with a 1250 Hz spectral bandwidth. The MRSI sequence was designed with a metabolite-cycling technique for lipid–water separation. The in vivo repeatability performance of the sequence was assessed by conducting a test–reposition–retest study within healthy subjects. The coefficient of variation (CV) in the estimated FF from the test–retest measurements showed a high degree of repeatability of MRSI-FF (CV = 4.3 ± 2.5%). Additionally, the matching level of the spectral signature within the same anatomical region was also investigated, and their intrasubject repeatability was also high, with a small standard deviation (8.1 ± 6.4%). The MRSI acquisition duration was ~3 min only. The proposed MRSI technique can be a reliable technique to quantify and map renal metabolites within a clinically acceptable scan time at 3T that supports the future application of this technique for the non-invasive characterization of heterogeneous renal diseases and tumors.

Keywords