Animal (Jan 2008)
Physicochemical changes to starch granules during micronisation and extrusion processing of wheat, and their implications for starch digestibility in the newly weaned piglet
Abstract
Two trials were performed to assess changes in the physicochemical properties of precisely processed (micronised v. extruded) wheats, prior to inclusion in piglet diets. The in vitro data obtained were subsequently related to biological responses of newly weaned piglets over 14 days. The effects of the severity of micronisation (Trial 1) or extrusion (Trial 2) on the nutritional value of two wheats (varying in endosperm texture) were examined. Extrusion, in contrast to micronisation, drastically disrupted the structural properties of wheat starch granules through melting of crystallites and macromolecular degradation of starch polysaccharides. These structural changes strongly improved the hydration characteristics of starch and its digestibility. The amount of starch digested in vitro was approximately 0.20, 0.70 and 0.90 for the unprocessed, micronised and extruded samples, respectively. This enhanced in vitro digestibility correlated well with, and helped to explain, the significant improvement in the apparent digestibility of starch at both the 0.5 region (mean coefficients for extruded wheat were 0.869 and 0.959 v. raw 0.392; P = 0.017) and 0.75 region (extruded 0.973 v. raw 0.809; P = 0.009) of the small intestine, when compared with piglets fed an unprocessed wheat diet. Extrusion and, to a lesser extent, micronisation lessened the reduction in apparent starch digestibility on day 4 post-weaning, typically seen at the 0.5 intestinal region in piglets fed an unprocessed wheat diet. Processing variables influenced both in vitro and in vivo data, with for instance, a positive relationship between specific mechanical energy (SME) input during extrusion and starch digestibility at the 0.5 region. The higher digestibility coefficient observed at the 0.5 region for the high SME diet suggests enhanced digestion and more rapid release of starch. However, it remains to be seen whether a diet containing rapidly digestible, as opposed to slowly digestible, starch is more beneficial for piglets. This rate of starch breakdown in the piglet is an important finding, which may have implications in helping to alleviate the post-weaning growth check, particularly in the absence of in-feed antibiotic growth promoters. Processing did not appear to offer any benefit over unprocessed wheat with regard to daily live-weight gain or the apparent digestibility of nitrogen in the small intestine over the 14-day period. Based on the enhanced in vivo starch digestibility, performance might be improved over a longer period, although future studies are required to confirm this. Precise processing variables for raw materials must be stated in all animal trials.