Malaria Journal (Oct 2009)

A simple cost-effective high performance liquid chromatographic assay of sulphadoxine in whole blood spotted on filter paper for field studies

  • Sijuade Abayomi O,
  • Happi Christian T,
  • Gbotosho Grace O,
  • Sowunmi Akin,
  • Oduola Ayoade MJ

DOI
https://doi.org/10.1186/1475-2875-8-238
Journal volume & issue
Vol. 8, no. 1
p. 238

Abstract

Read online

Abstract Background Artesunate plus sulphadoxine-pyrimethamine is one of the four artemisinin-based combination therapies currently recommended by WHO as first-line treatment for falciparum malaria. Sulphadoxine-pyrimethamine is also used for intermittent preventive treatment for malaria in pregnancy. Drug use patterns and drug pharmacokinetics are important factors impacting the spread of drug resistant parasites hence it is imperative to monitor the effect of pharmacokinetic variability on therapeutic efficacy. Unfortunately, information on the pharmacokinetics of sulphadoxine in children and pregnant women with malaria is very limited. Methods for the assay of sulphadoxine-pyrimethamine have been previously reported, but they are not cost-effective and practicable in analytical laboratories in low resource areas where malaria is endemic. Efforts in this study were thus devoted to development and evaluation of a simple, cost-effective and sensitive method for quantification of sulphadoxine in small capillary samples of whole blood dried on filter paper. Methods Sulphadoxine was determined in whole blood by reversed-phase high performance liquid chromatography with UV detection at 340 nm. Sulisoxazole (SLX) was used as internal standard. Chromatographic separation was achieved using a Beckman Coulter ODS C18 and a mobile phase consisting of 0.05 M phosphate buffer-methanol-acetonitrile (70:17:13 V/V/V) containing 1% triethylamine solution. Results Standard curves from sulphadoxine-spiked blood added to filter paper were linear over the concentration range studied. Linear regression analysis yielded correlation coefficient r2 > 0.99 (n = 6). Extraction recoveries were about 82-85%. The limit of quantification was 120 ng/ml while the within and between assay coefficient of variations were Conclusion The recovery and accuracy of determination of SDX from whole blood filter paper samples using the method described in this study is satisfactory, thus making the method a valuable tool in epidemiological studies and therapeutic drug monitoring in developing endemic countries. Furthermore, the applicability of the method in studying the pharmacokinetic disposition of SDX in a patient suggests that the method is suitable in malaria endemic areas.