Diabetology & Metabolic Syndrome (Jul 2012)

Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice

  • Yang Zhi-Hong,
  • Miyahara Hiroko,
  • Takeo Jiro,
  • Katayama Masashi

DOI
https://doi.org/10.1186/1758-5996-4-32
Journal volume & issue
Vol. 4, no. 1
p. 32

Abstract

Read online

Abstract Background Frequent consumption of a diet high in fat and sucrose contributes to lifestyle-related diseases. However, limited information is available regarding the short-term effects of such a diet on the onset of obesity-associated metabolic abnormalities. Methods Male C57BL/6 J mice were divided into two groups and fed a standard chow diet (control group) or a high fat–high sucrose diet containing 21% fat and 34% sucrose (HF–HS diet group) for 2 or 4 weeks. Results The HF–HS diet significantly induced body weight gain beginning at week 1 and similarly increased mesenteric white adipose tissue weight and plasma insulin levels at weeks 2 and 4. Plasma resistin levels were notably elevated after feeding with the HF–HS diet for 4 weeks. Measurement of hepatic triglycerides and Oil Red O staining clearly indicated increased hepatic lipid accumulation in response to the HF–HS diet as early as 2 weeks. Quantitative PCR analysis of liver and white adipose tissue indicated that, starting at week 2, the HF–HS diet upregulated mRNA expression from genes involved in lipid metabolism and inflammation and downregulated genes involved in insulin signalling. Although plasma cholesterol levels were also rapidly increased by the HF–HS diet, no differences were found between the control and HF–HS diet–fed animals in the expression of key genes involved in cholesterol biosynthesis. Conclusions Our study demonstrates that the rapid onset of hepatosteatosis, adipose tissue hypertrophy and hyperinsulinemia by ingestion of a diet high in fat and sucrose may possibly be due to the rapid response of lipogenic, insulin signalling and inflammatory genes.

Keywords