PLoS ONE (Jan 2019)

Identifiability and numerical algebraic geometry.

  • Daniel J Bates,
  • Jonathan D Hauenstein,
  • Nicolette Meshkat

DOI
https://doi.org/10.1371/journal.pone.0226299
Journal volume & issue
Vol. 14, no. 12
p. e0226299

Abstract

Read online

A common problem when analyzing models, such as mathematical modeling of a biological process, is to determine if the unknown parameters of the model can be determined from given input-output data. Identifiable models are models such that the unknown parameters can be determined to have a finite number of values given input-output data. The total number of such values over the complex numbers is called the identifiability degree of the model. Unidentifiable models are models such that the unknown parameters can have an infinite number of values given input-output data. For unidentifiable models, a set of identifiable functions of the parameters are sought so that the model can be reparametrized in terms of these functions yielding an identifiable model. In this work, we use numerical algebraic geometry to determine if a model given by polynomial or rational ordinary differential equations is identifiable or unidentifiable. For identifiable models, we present a novel approach to compute the identifiability degree. For unidentifiable models, we present a novel numerical differential algebra technique aimed at computing a set of algebraically independent identifiable functions. Several examples are used to demonstrate the new techniques.