IEEE Open Journal of the Industrial Electronics Society (Jan 2022)

Analytical Prototype Functions for Flux Linkage Approximation in Synchronous Machines

  • Shih-Wei Su,
  • Christoph M. Hackl,
  • Ralph Kennel

DOI
https://doi.org/10.1109/OJIES.2022.3162336
Journal volume & issue
Vol. 3
pp. 265 – 282

Abstract

Read online

Physically motivated and analytical prototype functions are proposed to approximate the nonlinear flux linkages of nonlinear synchronous machines (SMs) in general; and reluctance synchronous machines (RSMs) and interior permanent magnet synchronous machines (IPMSMs) in particular. Such analytical functions obviate the need of huge lookup tables (LUTs) and are beneficial for optimal operation management and nonlinear control of such machines. The proposed flux linkage prototype functions are capable of mimicking the nonlinear self-axis and cross-coupling saturation effects of SMs. Moreover, the differentiable prototype functions allow to easily derive analytical expressions for the differential inductances by simple differentiation of the analytical flux linkage prototype functions. In total, two types of flux linkage prototype functions are developed. The first flux linkage approximation is rather simple and obeys the energy conservation rule for “symmetric” flux linkages of RSMs. With the gained knowledge, the second type of prototype functions is derived in order to achieve approximation flexibility necessary for SMs with permanent (or electrical) excitation with “unsymmetric” flux linkages due to the excitation offset. All proposed flux linkage prototype functions are continuously differentiable, obey the energy conservation rule and, as fitting results show, achieve a (very) high approximation accuracy over the whole operation range.

Keywords