Revista Boletín Redipe (Aug 2020)

Implementación de un algoritmo genético mediante una aplicación informática basado en la computación neuronal y evolutiva para obtener el cromosoma mejor adaptado

  • María de los Ángeles Rodríguez-Cevallos,
  • María José Andrade-Albán,
  • Roberto Carlos Maldonado-Palacios,
  • Cristhian Alfonso Cobos-Cevallos

DOI
https://doi.org/10.36260/rbr.v9i8.1045
Journal volume & issue
Vol. 9, no. 8

Abstract

Read online

El objetivo de la investigación es implementar un algoritmo genético mediante una aplicación informática basado en la computación neuronal y evolutiva para obtener el cromosoma mejor adaptado, dicho desarrollo demanda del análisis estadístico decriptivo basado en algoritmos genéticos. Sé utilizó específicamente veinte y uno tipos de cromosomas que lo datos de ingreso serán una red en formato Pajek (* .net) y los datos de salida mencionará la partición de modularidad más alta encontrada, en formato Pajek (*.clu), y su valor correspondiente de modularidad, es decir después de la selección del cromosoma, del cruce o la mutación se realiza la evaluación para la decodificación por medio del parámetro Aptitud, seleccionando de ésta manera por medio de la Rueda de la Ruleta para obtener el cromosoma mejor adaptado. Se utilizó específicamente veinte y uno tipos de cromosomas transformadas en formato Pajek (.net) y los algoritmos genéticos (AG) funcionan entre el conjunto de soluciones de un problema llamado fenotipo, y el conjunto de individuos de una población natural, codificando la información de cada solución en una cadena, generalmente binaria, llamada cromosoma. Los símbolos que forman la cadena son llamados genes. Cuando la representación de los cromosomas se hace con cadenas de dígitos binarios se le conoce como genotipo. Los cromosomas evolucionan a través de iteraciones, llamadas generaciones. En cada generación, los cromosomas son evaluados mediante la computación neuronal y evolutiva usando alguna medida de aptitud. Las siguientes generaciones (nuevos cromosomas), son generadas aplicando los operadores genéticos repetidamente, siendo estos los operadores de selección, cruzamiento, mutación y reemplazo, para lograr obtener el cromosoma mejor adaptado. En este artículo se explica la implementación de un algoritmo genético mediante una aplicación informática basado en la computación neuronal y evolutiva para obtener el cromosoma mejor adaptado, que parte de una población de soluciones, y en base al valor de la función de adaptación para cada uno de los individuos (soluciones) de esa población, se seleccionan los mejores individuos (según dicha función) y se combinan para generar otros nuevos. Este proceso se repite cíclicamente hasta que se cumple un criterio de parada.

Keywords